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Abstract 

Earth science applications of the future will stress the capabilities of even the 
highest performance supercomputers in the areas of raw compute power, mass 
storage management, and software environments. These NASA mission critical 
problems demand usable multi-petaflops and exabyte-scale systems to fully 
realize their science goals. With an exciting vision of the technologies needed, 
NASA has established a comprehensive program of advanced research in 
computer architecture, software tools, and device technology to ensure that, in 
partnership with US industry, it can meet these demanding requirements with 
reliable, cost effective, and usable ultra-scale systems. NASA will exploit, 
explore, and influence emerging high end computing architectures and 
technologies to accelerate the next generation of engineering, operations, and 
discovery processes for NASA Enterprises. This article captures this vision and 
describes the concepts, accomplishments, and the potential payoff of the key 
thrusts that will help meet the computational challenges in Earth science 
applications. 

1. ESE Computational Technology Requirements 

The mission of NASA’s Earth Science Enterprise (ESE) is to understand the total 
Earth system from the vantage point of space, and the effects of natural and 
human-induced changes on the global environment. This will enable improved 
predictions of climate, weather, and natural hazards (the three specific disciplines 
within ESE) for present and future generations. However, in order to achieve this 
goal, Earth science applications of the future will stress the capabilities and 
capacities of even the highest performance supercomputers in the aread of raw 
compute power, throughput, mass storage management, and software 
environments. For example, the computing and storage requirements for a 
“sensotweb” of several EOS satellites will be enormous: handling petabytes of 
data per day, Advances in spaceborne computing capabilities will be necessary 
to enable on-board data processing and data compression. NASA will also need 
advances in software environments to allow on-ground high performance 
supercomputers to run coupled Earth system models, for example, to forecast 
weather to the theoretical limits of prediction. 
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1 .I .  Weather Forecasting 

Let us look at the high end computing (HEC) requirements for each of the three 
ESE disciplines. In weather forecasting, we are currently able to provide 3-day 
forecasts with 93% accuracy and 7-day forecasts with only 62% accuracy. The 
ultimate goal is to provide 14-day weather predictions (theoretical limit) with more 
than 90% accuracy and understand its effects on the environment. The 
computational requirements for assimilating massive data volumes (>I 0" 
observations per day) in real-time could easily be more than IO6 times the current 
capabilities. This requires orders of magnitude increases in raw and sustained 
computational power as well as in data handling capabilities; however, new 
filtering strategies will also be necessary to compact the information before data 
assimilation. The report from the ESE Computational Technology Requirements 
Workshop contains extrapolated estimates for computing, networking, and data 
storage in year 201 0. The current capabilities and future requirements for 
weather forecasting are reproduced in Table 1. 
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Table I :  Current and future (in 2010) computational technology 
requirements for weather forecasting 

I Current I In 2010 I 

1.2. Climate Modeling 

Climate research also relies heavily on HEC resources. For example, current 
seasonal-to-interannual (S-I) prediction systems are useful for climate 
applications if single image model performance is at least 1000 d/d (simulated 
days per wall-clock day). In addition, since climate forecasts are based on 
ensembles of runs, an aggregate throughput of 20,000-30,000 d/d is actually 
required. However, even if these performance goals remain steady over the next 
10 years, the computational requirements will increase due to greater model 
complexity and higher resolution simulations. The requirements for decade-to- 
century predictions are similar, although more substantial in capacity computing 
because of increased complexity from the inclusion of atmospheric chemistry and 
resolution of the stratosphere. For instance, a single image of an atmospheric 
configuration of 1' resolution with 100 layers (including the stratosphere) and 40 
on-line chemical tracers would require a throughput of about 5 Tflops; with a 
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coupled ocean of 50 layers and 0.5' resolution, the requirement is 6.6 Tflops. 
The coupled model configuration with a job mix equivalent to 100 concurrent 
images (ensembles, parameter sensitivity sweeps) would then require 660 
Tflops. The input and output data volume for S-l prediction is estimated to be 10 
GB/day and 100 TB/day, respectively. 

1.3. Solid Earth Science 

Even though the area of solid Earth science is currently mission and data poor, 
advances in space technologies will enable new measurements resulting in a 
better understanding of complex, interacting solid Earth processes. High- 
resolution predictive models for forecasting natural hazards will have to be 
developed that process global observation streams in real time. For instance, 
radar interferometry missions such as ECHO will generate 100 GB of data per 
day that will have to be fully ingested for forecasting seismic activity, and require 
a sustained performance of 2 Tflops. Other sub-fields of solid Earth (e.g. 
volcanoes, magnetic fields, vegetation, ice modeling) have similar HEC 
requirements. An estimated capacity requirement is 100 Tflops and 10 PB/day of 
output data. 

1.4. Capability and Capacity Needs 

Overall, the sustained capability-computing requirement is a few teraflops for all 
three disciplines within ESE, and is primarily driven by model resolutions. 
Capacity requirements are significantly higher, but can be provided by a 
geographically distributed environment. However, the tradeoff between tightly- 
coupled systems capable of 1 00 Tflops sustained performance and loosely- 
coupled distributed systems with 1 Pflops throughput capacity is ESE discipline 
specific. For example, the latter platform may be sufficient for solid Earth 
applications but will create a data transport bottleneck for weather prediction 
codes. 

2. HEC Technology Trends and Limitations 

To meet these ambitious ESE application goals, significant improvements are 
required in NASA's ability to create, process, understand, store, and 
communicate data. This implies that dramatic advances are required in a wide 
spectrum of HEC technologies, including computer system architectures, storage 
technologies, and software environments. In this article, we will discuss current 
industry trends, research challenges, and innovations in each of these areas. 
However, to satisfy ESE requirements, major progress are also necessary in 
other arenas such as simulation models (greater complexity, higher resolution, 
multi-component coupling, etc.), algorithms (proper choice of algorithms, design 
of new architecture-appropriate new algorithms, data compression techniques, 
etc.), and data analysis and visualization (ability to handle extremely large data 
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sets, real-time computational steering, knowledge extraction, etc.). These latter 
areas will not be addressed in this article. 

2.1. Commodity MPP and Clusters 

The dramatic advances in HEC performance achieved within the last decade are 
a product of semiconductor technology improvements (attributed to Moore’s Law) 
and the exploitation of commodity devices in massively parallel processing 
(MPP) and cluster (e.g., Beowulf) system architectures. As reflected by the TOP- 
500 list of the world’s fastest computers (www.top500.org), the overall rate of 
performance gain in the last ten years has been approximately 600X (80% 
average annual improvement). This sustained growth was derived from a 
combination of advances in processor architecture, clock speed, system scale, 
and software technology. The rapidly increasing peak performance and 
generality of superscalar cache-based microprocessors long led researchers to 
believe that competing architectures hold little promise for future large-scale 
computing systems. Due to their cost effectiveness, an ever-growing fraction of 
today’s supercomputers employ commodity superscalar processors, arranged as 
systems of interconnected symmetric multiprocessor (SMP) nodes. 

The integration of commodity off-the-shelf (COTS) components such as CPUs 
and memory in MPPs has provided good performance-to-cost ratios by exploiting 
the investment and advances made in complex semiconductor devices for much 
broader markets than that of the supercomputing arena. Commodity clusters 
have pushed the cost benefits even further by integrating full systems into 
cooperative ensembles via dedicated system area networks (SAN) for minimum 
hardware development time and maximum resource reuse (in both hardware and 
software). Conventional wisdom asserts that the COTS-based cluster and MPP 
strategy will enable petaflops-scale performance by 201 0. Thus, according to this 
reasoning, the ESE application requirements will be fully satisfied by future 
systems evolved incrementally through this strategy. 

2.2. Vector Processors and the Earth Simulator 

There are two major factors that counter this perspective. First, conventional 
MPPs and commodity clusters deliver low sustained performance with respect to 
peak for many applications and are difficult to program, debug, and optimize. 
Second, a number of important opportunities are offered by innovative computer 
architectures that could achieve higher fractions of peak performance but are 
unavailable to scientists because of the constraint to use only conventional 
technologies. In short, supercomputers should be designed with HEC 
requirements and methods in mind to achieve the best in capabilities, capacities, 
and usability. 

Perhaps a dramatic example demonstrating this view is the Japanese 
supercomputer referred to as the Earth Simulator (www.es.jamstec.go.jp). This 
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system, based on NEC S X 6  technology, comprises of 5120 vector processors 
(640 8-way nodes), each capable of 8 Gflops, and interconnected by a high- 
bandwidth low-latency 640x640 crossbar network. It is the fastest computer in 
the world with a LINPACK performance of 35.8 Tflops (five times the 
performance with half the number of processors of the IBM SP-based ASCI 
White, built using superscalar technology). More important than peak 
performance, however, is what this new capability entails for scientific 
communities that rely on modeling and simulation. For instance, the Earth 
Simulator was developed to provide unprecedented capabilities for solving Earth 
science applications including climate modeling, seismology, biosphere, plate 
tectonics, magnetosphere modeling, and planet formation. Its processors and 
network were specifically designed for supercomputing and the exceptional 
delivered performance (almost 65% of peak) on realistic applications 
demonstrates the effectiveness of this strategy. Of the Gordon Bell Prizes 
awarded at SC2002, scientists employing the Earth Simulator received the 
majority of the prizes (Sterling was Chair of the 2002 Gordon Bell Prize 
Committee). Note that other parallel vector systems, such as the Cray X I ,  also 
offer the potential to bridge the gap between sustained and peak performance for 
a significant number of scientific codes, and to increase computational power 
substantially. 

2.3. Conventional System Architectures 

In spite of dramatic performance gains demonstrated by conventional HEC 
systems that exploit commodity hardware, they have exhibited poor operational 
properties in many cases. It is certainly true that there are specific applications 
that run extremely well on such platforms (delivering better than 50% of peak); 
however, they are embarrassingly parallel requiring only limited inter-node 
communication and synchronization, have good memory access patterns yielding 
high cache hit rates, and are static and regular so that load balancing is fairly 
straightforward. But many important applications, including those from Earth 
science, are not so favorably structured; therefore conventional systems are 
typically ill equipped to efficiently handle their requirements. 

Current HEC systems suffer from a number of limitations due to their 
architectural inadequacies. There are several areas of concern that contribute to 
the degradation of sustained system performance. These include memory 
access latency, inter-processor communication latency, overhead of managing 
parallel resources and tasks, contention for shared resources including networks 
and memory banks, and absence of sufficient concurrency to sustain useful 
throughput of critical resources. For instance, conventional microprocessors rely 
almost exclusively on cache hierarchies and temporal locality to avoid memory 
access latency (out-of-order execution and prefetching are sometimes used for 
latency hiding). There is no hardware support for hiding remote access request 
latencies across distributed systems, although some software techniques for 
locality management attempt to mitigate such latencies. Current architectures 
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incorporate almost no mechanisms for supporting multiprocessor parallelism, 
except for cache coherence across a small number of processors within an SMP. 
There is usually some instruction set support for synchronization to control 
parallel execution; a software implementation can be very inefficient except for 
coarse-grained parallelism. Finally, two critical bottlenecks routinely experienced 
by conventional HEC systems are memory banks and interconnection networks 
(MPPs and clusters merely differ in the amount of bisection bandwidth that is 
provided). 

2.4. Distributed Grid Computing 

One possible mechanism to satisfy the capacity computing requirements of 
future HEC applications would be to use distributed grid technology [I]. Grids 
could also be utilized to provide seamless uniform access to federated 
databases, which are particularly important for ESE applications. In the last five 
years, computational grids have attracted a lot of worldwide interest, from both 
government agencies and computer industries, as a viable means to meet a 
variety of resource requirements. 

The NASA Grid is one of many such grid testbeds, and is designed to 
ubiquitously harness the power of geographically distributed resources, many of 
which are specialized and cannot be replicated at all agency sites. It involves 
linking NASA’s vast collection of heterogeneous and distributed computers, data 
archives, and scientific instruments to create a scalable, adaptive, robust, and 
transparent metacomputing environment. The interface to the NASA Grid will 
hide details of resource characteristics, such as location, nature, connectivity, 
and name, thereby presenting users with seamless access to these resources. 
As a valuable by-product, it will also enable remote collaboration among users to 
more easily model, simulate, and analyze large-scale realistic scientific problems 
in support of mission goals. It will therefore allow scientists and engineers to 
focus on making new discoveries in science rather than on the details of using 
specific hardware, software, and information resources. However, grid 
technology is still somewhat in its infancy, and significant strides in middleware, 
high-level services, information management systems, and application 
environments are necessary to realize its promised objectives. To that end, the 
Global Grid Forum co-founded by NASA is an international organization with the 
charter to standardize the different grid access and usage protocols 
(www.ggf.org). We will not discuss grid technology trends and challenges in this 
article. 

2.5. Software Environments 

We can think of innovative HEC system architectures as a means to improve 
computational productivity by increasing both peak and sustained performance. 
Computational productivity is also improved by the effective choice and/or the 
proper design of algorithms for these new architectures. But human productivity 
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must also be enhanced if scientists are to routinely and efficiently utilize the 
petaflops-scale supercomputers of the future. In other words, the 
programmability of computer architectures must be improved to increase their 
utilization. For example, novel programming techniques must be developed for 
efficient and economical representation of algorithms and their optimal mappings 
to target architectures. This includes programming paradigms (languages, 
libraries, compilers, etc.) as well as user tools (parallelization, performance 
analysis, debugging, etc.) with the goal to improve parallel performance, 
scalability, portability, and interoperability. In addition, problem solving 
environments (PSEs) are necessary to make application scientists more 
productive. This encompasses the areas of workflow definition, specification, and 
management; data analysis and knowledge discovery; and application portals 
and graphical user interfaces (GUls). 

Apart from such programming tools and information environments, dramatic 
innovations in runtime execution systems (e.g. smart operating systems, dynamic 
adaptive environments to support cross-discipline interactions) are also required 
to harness the full potential of the highest performance supercomputers. Current 
runtime environments will be unable to handle the complication of managing very 
large ensembles of processing elements and overcome the generally costly 
service times routinely imposed by typical operating system calls. For example, 
Pthreads, the Unix mechanism for managing parallelism can take a long time to 
instantiate a new process while petaflops-scale machines will certainly require 
almost cycle-by-cycle context switching. In other words, to positively impact 
future NASA Earth science missions, we need flexible implementations of critical 
algorithms (e.g. fault-tolerant, latency-tolerant, steerable, adaptive, and 
incorporation of data provenance and uncertainty), coupled with relevant HEC 
technologies for formulating, mapping, executing, and managing them on new 
arch it ect u res. 

3. Innovations in HEC Architecture 

Thanks to improved VLSl technology, there are many opportunities to overcome 
the deficiencies of conventional HEC architectures through innovative system 
design. Let us look at some possibilities to improve sustained performance, while 
also increasing peak performance. Where once the arithmetic and logic unit 
(ALU) was considered the most precious resource of a computer system, it now 
occupies only a small fraction of the microprocessor’s area and consumes little 
power. Thus there is a tremendous potential for increasing system performance 
by replicating ALUs, assuming that they can be controlled in a coordinated 
manner and kept usefully busy. It also implies that ALUs can be inserted into 
structures to more effectively utilize resource-critical units such as memory 
banks, thereby greatly increasing throughput and reducing latency. Another 
legacy is the separation between processing and memory. Historically, the 
technologies and optimizations for logic and memory were different. However, 
current fabrication processes are capable of implementing both DRAM memory 
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cells and CMOS logic on the same die, enabling new classes of computing 
structures. Current VLSl technology can also achieve a high level of device 
density, allowing very complex structures, Multiple processors can therefore 
reside on a single die, delivering performance gains proportional to the increase 
in devices on the chip. Finally, some basic hardware mechanisms (e.g. Intel 
hyper-threading) are now available to support multithreading for rapid context 
switching and latency hiding. 

In response to this multitude of opportunities resulting from technology advances, 
new directions in HEC architecture are being explored. Three broad classes of 
innovative architectures (streaming, HTMT, and Gilgamesh) are derived in part 
from the ability to incorporate many ALUs and their control units on a die. In this 
section, we introduce these areas of new work and then describe specific 
architecture research at NASA that will enable efficient petaflops-scale 
processing . 

3.1. Logic Intensive 

A new class of processor design that might be called Logic Intensive Computer 
Architecture (LICA) is being pursued in different forms to exploit the opportunity 
to include many ALUs within a single microprocessor. With LICA structures, 
many data elements are simultaneously directed through multiple layers or 
arrays of arithmetic units, sometimes moving between successive ALUs without 
making intermediate stops at the general register set. For calculations that exhibit 
a large number of operations per unit data access from memory as might occur 
with many digital signal processing and graphics rendering problems, the 
performance benefits may be substantial. Two such projects include the Stanford 
Streaming Supercomputer (SSS) at Stanford and the Tera-op Reliable 
Intelligently adaptive Processing System (TRIPS) at UT Austin. 

The streaming processor being developed at Stanford contains tens to hundreds 
of ALUs on each chip with performance achieved through pipelining, fused 
computations, and stream parallelism [2]. The SSS stream model exposes 
parallelism and locality in applications by passing streams of records (data) 
through computational kernels. Data parallelism is obtained across stream 
elements while pipeline (functional) parallelism exists across kernels. In addition 
to spatial and temporal locality within each kernel, a producer-consumer locality 
exists between neighboring kernels, This is achieved by avoiding unneeded 
memory traffic associated with intermediate loads and stores to main memory. A 
stream processor can therefore be simplistically viewed as a vector processor 
with local registers. The overall goal of the SSS project is to achieve a 
cost/performance ratio of 1 OOX better than conventional MPP and cluster-based 
supercomputers on both arithmetic and memory bandwidth limited computations. 

The goal of the UT Austin TRIPS project is to develop a computer architecture 
that achieves single-chip teraops performance and keeps pace with advances in 

8 



semiconductor technology [3]. It uses a novel processor organization called Grid 
Processor Architectures (GPAs) that is composed of a tightly-coupled array of 
ALUs, each with limited control and connected via a thin network. Programs are 
run by mapping large blocks of statically-scheduled instructions onto the GPA 
and then executing them dynamically in dataflow order. To hide on-chip 
communication latencies, instructions are scheduled so that their critical dataflow 
paths lie along neighboring (or at least nearby) ALUs. The strategy is similar to 
that of the SSS where instruction blocks are executed on chains of ALUs without 
transmitting temporaries back to the registers, thereby avoiding situations that 
limit the scalability of conventional architectures. TRIPS is also reconfigurable to 
efficiently satisfy a range of possible workloads (e.9. control-bound integer 
codes, parallel threaded codes, compute-bound streaming codes) via on-chip 
sensors and a lightweight software layer called morphware. 

But not all data has high temporal locality. For many applications, large sparse 
and time varying data sets govern the form and function of the application. The 
manipulation of metadata requires very little processing on a per word basis and 
exhibits poor locality. This, in turn, results in poor cache behavior and low 
processor utilization. The opportunity to employ many ALUs on a single chip and 
merge with DRAM memory on a single chip has resulted in another class of 
innovative architecture: processor-in-memory (PIM). PIM is one of the most 
important advanced device technologies being pursued by NASA as part of the 
HTMT and Gilgamesh architectures. 

3.2. Hybrid Technology Multithreading 

Historically, computer performance has grown in response to advances in device 
technology, computer architecture, programming methods and tools, and 
application algorithms. The Hybrid Technology Multithreading (HTMT) 
architecture project involved more than a dozen government, industry, and 
academic institutions, and sponsorship of four government agencies to explore 
the frontier of computer design. HTMT pushed several dimensions of system 
design and operation to accelerate and explore multiple high-risk, high-payoff 
opportunities to realize practical effective petaflops-scale computation [4]. The 
result of the three-and-a-half year project was to demonstrate the feasibility of 
implementing a petaflops-scale computer with size and power requirements less 
than that of conventional systems delivering one one-hundredth the performance. 
The HTMT structural diagram is shown in Figure 1. 
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I O S r n  I' 
Figure 1: HTMT structural diagram 

3.2.1. Advanced Device Technologies 

The device technologies explored and developed as part of the HTMT 
architecture project are described below. 

Superconductor RSFQ Loaic 

Superconductor components have enabled the fabrication of the highest speed 
logic of any device technology. Clock rates of over 770 GHz have been 
demonstrated in the laboratory (SUNY Stony Brook) using rapid single flux 
quantum (RSFQ) gates implemented with Josephson Junctions fabricated as 
Niobium on Silicon and cooled to 4 Kelvin. Also significant is that power 
dissipation per gate of approximately 0.1 microwatts can be three orders of 
magnitude less than that of CMOS gates running two orders of magnitude 
slower. The challenges of using RSFQ include data communication among 
components and the storage of temporary data in registers and cache. At an 
assumed processor clock rate of 100 GHz, signal propagation is less than a 
millimeter per cycle, requiring novel processor designs. It has been shown that 
data transfers between chips on a shared MCM substrate can operate at 30 
G b/sec point-to-point. 
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Optical Networkinq 

Petaflops-scale architecture bisection bandwidth requirements range from 1 015 to 
1 017 bits/sec, depending on underlying assumptions about system architecture 
and program locality. It could take tens of millions of wires to provide all of the 
global communication bandwidth required by such systems. Using modulated 
lasers, digital light signals can be operated at up to 10 Gb/sec per channel. Wave 
Division Multiplexing (WDM) may combine hundreds of separate wavelengths, 
enabling a communication medium capable of multiple Tb/sec per channel. 
Switching rates of 50 MHz is currently possible, with rates of 1 GHz using 
experimental devices a future prospect. This optical communication technology 
was developed at Princeton University with many of the required devices 
demonstrated on the bench. An innovative network topology referred to as the 
“Data Vortex” was devised at IDA to provide a very high degree interconnect with 
dynamic routing using optical butterfly switches. The Data Vortex appears as a 
series of concentric network cylinders, each similar to an Omega network with 
radial inward directed paths. Data enters the external surface and departs from 
the internal concentric cylinder. This topology exhibits exceptional properties of 
sustained bandwidth and latency, even under heavy loads. 

Holoqraphic Storage 

Memory density, access time, bandwidth, and power consumption are critical in 
determining the sustained performance, generality, power, size, and cost of a 
computer system. The possibility of improved memory motivated an exploration 
of optical holographic storage based on photorefractive physics at Caltech and 
IBM Almaden. Photorefractive materials retain a holographic image of a page of 
binary data, of approximately a million bits, typically storing it in a small 1 cc cube 
of optically sensitive material. The entire page can be read out in a single cycle, 
providing very high data bandwidth. Multiple pages can be stored in the same 
device by altering the laser angle of incidence or aiming it at a different spatial 
position in the storage medium. Power consumption is limited to the single laser 
and data lifetimes approach many hours, minimizing the need for refresh. 

Processor-in-Memory 

Advances in semiconductor technology permit the merger of both DRAM cells 
and CMOS logic on the same die, manufactured together with the same 
fabrication process, enabling a number of new structures including processor-in- 
memory (PIM). PIM exploits the proximity of logic with memory to expose the 
entire row buffer directly to processing logic and permits a high degree of 
memory partitioning on the chip to greatly increase available memory bandwidth 
while reducing access latency and power consumption. All of these 
characteristics offer the potential for a new generation of highly efficient 
computing and the opportunity for employing smart memories in computer 
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systems to effectively process data intensive computations with low temporal 
locality. 

3.2.2. HTMT System Architecture 

The HTMT architecture] shown in Figure 2, incorporates two major subsystems: 
the superconductor processor core and two-level smart memory system. An 
important revolutionary feature of HTMT is that the memory is smart while the 
processors are relatively primitive (conventional systems operate with smart 
processors and dumb memory). In other words, the memory system controls the 
processors. The interface between the two subsystems is via a high speed 
SRAM PIM layer that acts as a global L3 cache. This layer feeds the instructions 
and data to the processors, performing load balancing and all of the data gather 
and write-back scatter operations to the memory. The 4096 superconductor 
processors are multithreaded to hide internal propagation delays through the 
execution units and the latency to the SRAM PIM layer. 

Figure 2: HTMT system architecture 

The main memory system consists of large DRAM PIM with the optical 
holographic devices serving as a high-speed backing-store (3/2 memory). All PIM 
components, both DRAM and SRAM, are interconnected by the Data Vortex 
optical communication network, which also provides I/O ports to external support 
including mass storage and user interfaces. Each DRAM PIM chip is subdivided 
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between 16 and 64 processor node pairs. In ensemble, the main memory system 
in cooperation with the SRAM PIM layer conduct a strategy of data and task 
prestaging (referred to as “percolation”) in which the flow control of the program 
execution is managed by the memory. As functions are ready to be executed, all 
of the required information is migrated to the SRAM PIM layer without 
intervention by or intrusion of the superconductor processors. Once there, the 
SRAM PlMs feed the work to the ultra high-speed processors, which perform 
only those operations required for the actual execution of the application, leaving 
all of the overhead tasks to the PIMs. Thus, the major sources of performance 
degradation, including latency, contention, overhead, and starvation are 
managed by the low-cost PIMs, ensuring excellent efficiency of the high-cost 
superconductor processors. 

3.2.3. Summary Findings 

0 

0 

0 

0 

0 

0 

Performance: HTMT demonstrated that a petaflops-scale computer could be 
implemented with technologies either already tested in the laboratory or for 
which there was a clear development path. Through incremental advances 
and the scaling properties of the architecture, it was anticipated that future 
generations of HTMT could realize an overall performance approaching 100 
Pflops before intrinsic bottlenecks and fundamental technology limitations 
inhibited further extensions of its processing capability. 
Cost: While it would be impossible to put a dollar value on the replacement 
price of an HTMT machine, one important metric is parts complexity, Le. the 
number of distinct devices with which it would be assembled. The total 
number of chips was about 200,000 that, while large, is certainly manageable. 
Space: The core system itself, excluding support equipment and mass 
storage, was only 400 square feet; ten times less than a 1 Tflops conventional 
system which delivers only a thousandth the performance. A more honest 
number including all mass storage, power conditioning, and cooling 
equipment was 12,000 square feet, including 20 PB of hard disks. 
Power: The core computer would consume 500 watts internally, and 100 KW 
after cooling to 4 Kelvin. The additional power required for the optical 
network, high-speed semiconductor memory, PIM DRAM, and holographic 
storage would consume less than 1 MW (about that of the ASCI Red machine 
which has one thousandth the computing capability). 
Efficiencv: HTMT incorporated mechanisms that performed all of the 
overhead in the pervasive and cheap PIM processors, executed almost all 
zero locality data oriented operations directly in the memory by the PIM 
processors, and allowed the compute processors to work exclusively out of 
high-speed SRAM. It thus avoiding the latency to main memory by prestaging 
all data associated with a task to be performed in the SRAM by means of the 
PIM processors prior to the RSFQ processors engaging in the work. - 
Proqra rnrnabi/it y: HT M T de m on s t ra t ed that s h a red me m o ry , m u It i t h re ad ed 
parallelism, hardware supported latency management, and automatic 
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scheduling and load balancing eliminates many of the critical aspects of 
programming conventional parallel computers that make the task so arduous. 

3.3. Gilgamesh MIND 

Gilgamesh (Billions (Giga) of Logic-Gate Assemblies with MESH integration) is 
an advanced scalable computer architecture for both ground-based and 
spaceborne HEC systems based on an innovative PIM design [5,6]. Gilgamesh is 
a computing system that integrates the MIND (Memory, Intelligence, and 
Network Device) PIM architecture in potentially large arrays for a continuum of 
computational capabilities from tens of gigaflops to multiple petaflops. Gilgamesh 
systems may be used in a standalone structure (sea of PIMs) or in combination 
with high-speed external processors and backing storage components. 

MIND supports a virtual name space with multiple concurrent contexts. A 
distributed address translation method and underlying mechanisms allow virtual 
pages of data to be efficiently located within the distributed physical memory 
while supporting virtual page migration for active locality management. MIND 
supports message-driven computation using a class of active message called 
parcels (PARellel Communication ELements). A parcel can invoke remote tasks 
(those on another MIND chip) as simple as a memory read or as complex as 
instantiating a new object and set of functions. Parcels permit work to be moved 
to the data when it is more effective rather than the conventional strategy of 
always moving data to work. MIND supports multithreading for dynamic adaptive 
management of local (on-chip) resources and latency hiding. Multithreading 
proves to be a powerful unifying mechanism that greatly simplifies the control 
logic of the MIND processors while achieving greater utilization of the memory 
and I/O pin bandwidths. 

3.3.1. Features of PIM technology 

PIM was introduced briefly in Section 3.2.1. Tne ability to co-locate ana integrate 
CMOS logic and DRAM cell arrays on the same die provides the potential for an 
unprecedented degree of coupling between these two historically segregated 
digital devices. A number of advantages compared to conventional practices are 
implied by this new strategy to devising digital structures; to what degree they are 
exploited depends on the specific architecture devised and the operational 
execution model employed. The salient features of PIM technology are: 

1. Dramatic increase in available memory bandwidth, 
2. Significant reduction in memory access latency, 
3. Efficient operation in the absence of temporal and spatial locality of 

memory access, 
4. Substantial reduction in gate count per processor, 
5. Very low power consumption per operation, 
6. Major decrease in system size and weight, 
7. Opportunity for high availability through replication, and 
8. Technology tracking by optimally using Moore’s Law. 
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3.3.2. Gilgamesh System Architecture 

The Gilgamesh system architecture exhibits a hierarchical structure of functional 
elements and their interconnection. Different implementations may vary 
dramatically in their actual structure depending on scale, functionality, and 
relationship to other elements of the global system in which they are embedded. 
Nonetheless, all Gilgamesh systems may be devised within a three-level 
framework. At the system level, the Gilgamesh architecture is defined in terms of 
the number of MIND modules employed, their interconnect topology and network 
components, and the external devices attached to it. At the MIND module level, 
the MIND chip has an internal structure that includes memory, processing, and 
communication functionality, and is capable of fully independent operation or as 
a cooperating element in a highly parallel structure. At the MIND node 
architecture level, all the functionality required to perform core calculations and 
manage physical and logical resources is incorporated. 

3.3.3. MIND Module Structure 

The MIND module (usually a single chip) is designed to serve both as a complete 
stand-alone computational element and as a component in synergistic 
cooperation with other like modules. The MIND module subsystems are therefore 
devised to support both its internal functionality and its cooperative relationship. 
The major functional elements of the MIND module are shown in Figure 3 and 
described below. 
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Figure 3: MIND module organization 
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The MIND node is the principal execution unit of the MIND architecture. Multiple 
nodes are incorporated on a single chip; the exact number is dictated by 
fabrication technology, chip real estate, and various design considerations (e.g. 
the number of gates per node). The node consists of the node memory block, the 
wide-word multithreaded processor, and connections to the parcel message 
interface and the MIND chip internal bus. 

S ha red 
Computing 
Resources 

Shared Function Units 

MIND provides the necessary logical and physical infrastructure to permit the 
addition of separate functional units that can be accessed by all MIND nodes as 
well as through a master-slave external interface. These can be pipelined, 
thereby supporting multiple requests concurrently and have their own dedicated 
access arbitration controllers such as vector floating point multiply-add functional 
units. 

In te ma I Shared Comm un ica tions 

The majority of node operations employ local resources, but some operational 
functionality is provided through subsystems on the MIND module but external to 
the specific node. Some examples are the shared function units and the external 
interfaces. Another important resource to which every node must have access is 
the combined memory blocks of the other nodes on the same MIND module. To 
support the sharing of function units, control of external interfaces, and access to 
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chip-wide memory blocks, an internal shared communication mechanism is 
incorporated as part of every MIND module. 

Master-Slave External Interface 

A Gilgamesh ensemble of MIND modules may operate as an independent 
system or cooperate with other computing elements. The MIND chip therefore 
incorporates an external interface that services the necessary communications, 
command, and control functions for interoperability with these remote 
components (not including other MIND chips). One or a collection of MIND 
modules may be slaved and responsive to the commands of one or more 
external master microprocessors. 

Streaminq 1.0 External Interface 

The external streaming interface provides a direct high bandwidth connection 
between external remote devices and the MIND memory blocks. The interface 
can support full direct memory access (DMA) rate of data transfer in or out of the 
chip. It can be used for such input devices as real-time digital cameras or output 
stereoscopic projectors at full frame rate. Using this interface, MIND units can be 
used as post sensor processors for digital signal processing tasks such as 
passive sonar or radar return data. 

Parcel Interface 

Inter-MIND chip communication is supported by the parcel packet transport layer. 
Each MIND chip includes multiple parcel interfaces to an external network 
providing access to all MIND nodes comprising a Gilgamesh system. Parcels 
support variable format packets for a wide array of sophisticated remote 
operation invocation. The parcel interface is capable of interpreting basic 
operations to perform the simplest tasks without demanding full thread scheduler 
support or can invoke a new thread for general software controlled function 
execution. 

3.3.4. MIND Node Architecture 

The MIND node provides the primary storage and operational resources of a 
Gilgamesh system. It manages the DRAM main memory, providing both local 
and remote access to its stored data. It also performs basic operations on 
multiple fields of data simultaneously. It initiates fine grain tasks, carries them 
out, and completes them, interleaving operations from separate but concurrent 
tasks to achieve high efficiency through hardware supported multithreading. The 
node assimilates parcels and instantiates new tasks in response, as well as 
generates outgoing parcels. Figure 4 shows a block diagram of the MIND node 
architecture. Each important component is described below. 



Figure 4: MIND node archifecfure 

Memorv Block 

The node memory block has one or more conventional stacks of DRAM cells. 
Each row may typically contain 2048 such cells. There are one-eighth as many 
output bus lines and sense amps as row cells. Thus a row, once addressed, is 
read in a succession of eight 256-bit groups (for 2048 cells per row). Access to 
the memory block is managed by the memory controller, which selects among a 
number of requests to determine the next memory access cycle and performs the 
memory operation that may include some simple logical function as part of a 
compound atomic operation on the designated memory cells. 

Parcel Handler 

The MIND node architecture is message driven; simple actions or entire threads 
may be invoked by the incidence of a complex message (parcel) from an external 
source. The parcel handler is responsible for accepting incoming messages and 
transmitting outgoing messages. It may also perform as an intermediate router, 
accepting a message at one port and sending it out a second port, depending on 
the parcel’s destination address. The parcel handler may directly access 
hardware buffers in response to a simple physical address parcel, access 
memory locations in response to a simple virtual address parcel, or instantiate a 



thread if the parcel identifies a function to be performed. Parcels can also support 
block moves within physical address space or virtual address space. 

Thread invocation is the parcel handler’s most powerful feature. It initializes the 
contents of a wide register including pointers to the code to be executed and sets 
the flag that designates that register as representing the state of an active thread. 
The thread supervisor then schedules the operations from the new thread, 
interleaving them with those of other active threads as resources become 
available. When parcels arrive at a rate greater than the node can process them, 
they are buffered in main memory and retained until the workload subsides and 
the buffered parcels can be processed. When this mechanism becomes over 
subscribed, a parcel is bounced back into the Gilgamesh fabric and grabbed by 
the first MIND module that has buffer space, to be released later. 

Wide Row Register Bank 

A bank with registers as wide as the row buffer is used for a number of purposes. 
They may be used to hold intermediate data, serve as a thread state register, act 
as an instruction cache, serve as a vector register, provide the equivalent of a 
translation look-aside buffer (TLB), provide data caching, buffer parcels, and 
store node control state. The registers are dynamically renamed and allocated by 
hardware. 

Thread Con troller 

The thread controller determines which wide registers are thread state registers 
and selects those that are ready to perform an operation. It detects when the 
different functional elements of the node are ready and matches the thread 
operation classes of the pending threads with the capabilities of the available 
function units. These may include resources at other nodes or shared function 
units on the MIND chip. 

Internal Interface 

This provides direct access to the other nodes on the MIND module as well as to 
the shared function units and external interfaces. Data may be moved through 
this interface or threads may be invoked in either direction. 

4. Innovations in Storage Technology 

Many Earth science applications are heavily dependent on persistent storage, 
the capability of storing large volumes of data indefinitely and reacquiring them 
quickly upon demand. The demand for mass storage within ESE is driven by 
data acquisition from real-time remote sensing, secondary data products derived 
from analysis of raw data, or from simulations of physical phenomena such as 
climate modeling. Data requirements from these domains extend from terabytes 
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to exabytes for long term archiving. Through much of NASA’s history, these 
requirements were met with reel-to-reel tapes stored offline and requiring 
operator assistance to retrieve. Under certain circumstances, this could take 
days depending on the nature of the data repository. More recently, large robotic 
tape drives have been employed that could provide requested data within 
minutes. However, tape technology is neither ideal, nor is it growing in capacity 
and performance as fast as its competing technology, namely disk drives. 

The mass market of personal computing has forced disk storage technology 
prices down while mobile computing has driven storage densities up and power, 
size, and weight characteristics lower. Although trends are highly sporadic, the 
average rate of capacity increases approaches a factor of two every 18 months. 
The future of mass storage is being defined around the migration to very large 
disk farms, with redundant disks for reliability. It is anticipated that tape storage is 
a sunset technology and that all data archiving will migrate to online cheap disks 
in the next five years. Today, the cost of a gigabyte of spinning storage is 
estimated at $1 for the drives themselves, with various degrees of markup 
depending on systems integrators. This year, ElDE drives will be available with 
capacities of 320 GB and bandwidths of 50 MB/sec using serial ATA interface 
and PCI 66 M H z  with 64-bit interfaces. A rack may hold as much as 25 TB, with 
a throughput of 2 GB/sec. A petabyte will consume 25 racks; well within the 
range of even moderate machine rooms. 

But even with the continued gains, data archiving requirements may outpace 
technological growth for Earth science requirements. The next major advance will 
be in rapid data compression and decompression. For read-only data files, which 
dominate most archiving purposes, emerging data compression techniques for 
many classes of data may yield a compression factor of up to two orders of 
magnitude. However, the methods still in development are compute intensive. 
Fortunately, microprocessor performance and cost is such that they can provide 
the necessary support. Future mass storage systems will be characterized as 
much by their data compression algorithms as they are by their specific spindle 
specifications. 

5. Innovations in Software Environments 

While advances in HEC architectures and distributed grid environments promise 
higher performance both in terms of capability and capacity computing, their 
software environments must keep pace in order to assist scientists and 
engineers deal with the complexity induced by system size and heterogeneity. 
Driven by the challenges described in Section 2.5, innovations in software 
environments must occur in two broad areas: programming tools and runtime 
systems. In this section, we describe important ongoing research at NASA in 
each arena that will eventually allow users to more easily harness the 
computational power of future petaflops-scale supercomputers. 
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5.1. Programming Tools 

Efficient parallelization is the key to faster codes that enable scientists to conduct 
higher fidelity simulations of their problems on state-of-the-art parallel computers. 
However, this mapping of algorithms to architectures-a key to performance, and 
ultimately science productivity-remains an extremely tedious and error prone 
process. Furthermore, inflexible, highly-coupled implementations translate to 
ever-increasing computing requirements and human effort. In fact, the 
formulation of large-scale multi-disciplinary simulations becomes intractable as 
the complexity of the model increases. With the goal to eventually automate the 
mapping of applications to architectures, researchers at NASA Ames, in 
collaboration with groups at the University of Greenwich and the European 
Center for Parallelism, are developing a number of parallelization and other 
computer-aided programming support tools, and testing them on a suite of NASA 
scientific applications. Their multi-level parallelization and optimization 
environment (shown in Figure 5) integrates three prototype tools to enable the 
rapid transformatior; of serial codes into efficient, correctly functioning, multi-level 
parallel codes. 

Figure 5: Multi-level parallelization and optimization environmenf 

5.1.1. Automatic Parallelization 

The first module of the integrated programming environment is called CAPO [7]. 
It is a parallelization assistant that includes sophisticated static program analysis, 
an informative and intelligent user interface, and portable parallel code 
generation. If necessary, CAPO is also able to restructure code with some user 
interaction, to improve performance. It first performs a data dependency analysis 
to determine how different variables depend on one another. All information is 
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stored in a database that a user can examine and potentially utilize to remove 
parallelization obstacles. The other two modules also use this database in order 
to function efficiently. CAPO next conducts a loop level analysis, searching for 
repeated sequences of instructions in the code that can be parallelized. Users 
are then guided through a series of GUls to view all instances where the code did 
not parallelize. The more obstacles a user is able to remove, the higher the level 
of parallelization that can be achieved. Once the user is satisfied, CAPO 
automatically inserts OpenMP directives and generates the parallel code for 
shared-memory systems. A similar tool, called CAPTools, which was developed 
at the University of Greenwich, can generate message-passing codes to run on 
distributed-memory machines. In fact, CAPO and CAPTools can interact 
seamlessly to produce multi-level parallel code. Recently, CAPO enabled 
researchers at NASA Goddard to run larger cloud simulations and more complex 
models in shorter periods of time, thereby providing additional insights into 
phenomena such as air-sea interactions and global climate changes [8]. 

5.1 -2. Relative Debugging 

Even when tools such as CAPO are used, porting serial codes to parallel form is 
still susceptible to errors. For example, the user might incorrectly indicate that a 
loop can be safely run in parallel. This could lead to the program using stale 
values in a distributed-memory version of the code. Finding such parallelization 
errors often requires the programmer to run the serial and parallel versions side- 
by-side in debuggers to try to find the first significant difference in execution. The 
Portable ParalleVDistributed Debugger (p2d2) group at NASA Ames and the 
CAPTools group at the University of Greenwich have collaborated to automate 
this process [9]. They use a combination of backtracking and re-execution in 
order to find the first difference in computation that may ultimately lead to an 
incorrect value that the user has indicated. In a prototype implementation, they 
use static analysis information from CAPTools in order to perform the 
backtracking as well as the mapping required between serial and parallel 
computations. 

5.1.3. Performance Analysis 

The process of tuning a parallelized code is also labor intensive. The 
programmer will typically go through several cycles of source code optimization 
and performance analysis. In collaboration with the European Center for 
Parallelism at Barcelona, researchers from NASA Ames are building an 
environment where the user can jointly navigate through program structure and 
performance data to make optimization decisions, automating tedious and error- 
prone tasks. They are interfacing CAPO with Paraver, a performance tool, so that 
the parallelization tool can query performance trace data and dynamically 
correlate the outcome with its loop analysis information [I 01. The environment is 
currently able to support a multitude of parallel programming paradigms (MPI, 
OpenMP, and multi-level). 
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5.2. Runtime Systems 

The conventional software architecture of a monolithic operating system and 
compiler-driven processing node is being replaced by a new logical organization 
that incorporates a third component, the runtime system, that serves as a virtual 
machine between systems software and the underlying hardware architecture. 
This layer of software abstraction is needed to manage large ensembles of 
processing elements and overcome costly operating system calls. Last 
generation MPPs and commodity clusters (e.9. Beowulf-class PC clusters) 
installed an operating system on each node and employed some protocol to 
manage them all. Distributed shared memory parallel systems such as the SGI 
Origin have a single system image, but the management of concurrent tasks and 
parallel resources is still relatively static. Runtime information about the status 
and operation of both the machine and the application is not exploited in the 
management of the system unless expressly incorporated into the application 
code. As advanced HEC architectures with hierarchies of processing elements 
and memories are realized, the role of the runtime system will become more 
pronounced in order to provide flexibility, ease of programming, generality, and 
performance efficiency. 

A new generation of runtime systems will present the computing resources to a 
controlling agent and dynamically allocate them to the application as the program 
reveals its capability demands. Such runtime nodes will also provide low-level 
management of the local resources including fault tolerance, debugging, 
performance monitoring, and logical services transparently to both the operating 
system and the compilers. A general framework referred to as “introspection” 
monitors all aspects of the local resources and nearby environment to respond to 
changes and requirements. Agents, which are objects that track specific local 
and neighborhood state, provide the vehicle for implementing introspection. 
Systems em bodying the concept of agent-supported introspection are scalable, 
potentially over millions of nodes, because they operate on a set of rules that do 
not require global information, although some global parameters may be part of 
the monitored state. In providing an intermediate for management between the 
single operating system strategy and the ensemble of independent and separate 
operating systems, runtime introspection will provide a robust and efficient 
abstraction for conducting time dependent parallel processing, simplifying the 
programming and management of very large high end computers. 

6. Summary and Conclusions 

This article provided an overview of emerging high end computing (HEC) 
technologies in the areas of computer system architecture, mass storage 
management, and software environments that will help meet some of the 
demanding requirements of future Earth science applications. We specifically 
described how innovations in computer system architecture (streaming, HTMT, 
and Gilgamesh) coupled with advances in software environments (automatic 
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parallelization, performance analysis, and runtime systems) will be instrumental 
in satisfying the capability and capacity needs of weather forecasting, climate 
modding, and solid Earth science NASA is intimately involved in almost all of 
these research efforts with the goal to enable efficient petaflops-scale processing 
by the end of this decade. 

References 

1 .  

2. 

3. 

4. 

, 
i 5 .  

6. 

I 7. 

~ 8. 

9. 

‘1 0. 

I .  Foster and C. Kesselman (Eds.), The Grid: Blueprint for a New 
Computing infrastructure, Morgan Kaufmann, San Francisco, CA, 1999. 
B. Dally, P. Hanrahan, and R. Fedkin, “A Streaming Supercomputer,” 
Unpublished report, Stanford University, Stanford, CA, Sep 2001 (available 
at http://graphics.stanford.edu/sss) 
R. Nagarajan, K. Sankaralingam, D. Burger and S. Keckler, “A Design 
Space Evaluation of Grid Processor Architectures,” 34th International 
Symposium on Microarchitecture, Austin, TX, Dec 2001, pages 40-51. 
T. Sterling and L. Bergman, “A Design Analysis of a Hybrid Technology 
Multithreaded Architecture for Petaflops Scale Computation,” 13th 
International Conference on Supercomputing, Rhodes, Greece, June 1999, 
pages 286-293. 
T. Sterling, D. Katz, and L. Bergman, “High Performance Computing 
Systems for Autonomous Spaceborne Missions,” international Journal of 
High Performance Computing Applications, Volume 15, Number 3,2001, 
pages 282-296. 
T. Sterling and H. Zima, “Gilgamesh: A Multithreaded Processor-In-Memory 
Architecture for Petaflops Computing,” SC2002, Baltimore, MD, Nov 2002. 
H. Jin, M. Frumkin, and J. Yan, “Automatic Generation of OpenMP 
Directives and its Application to Computational Fluid Dynamics Codes,” 3rd 
International Symposium on High Performance Computing, Tokyo, Japan, 
Oct 2000, Springer LNCS Volume 1940, pages 440-456. 
H. Jin, G. Jost, D. Johnson, and W.-K. Tao, “Experience on the 
Parallelization of a Cloud Modeling Code using Computer-Aided Tools,” 
tech. report NAS-03-006, NASA Ames Research Center, Moffett Field, CA, 
2003. 
G. Matthews, R. Hood, S. Johnson, and P. Leggett, “Backtracking and Re- 
execution in the Automatic Debugging of Parallelized Programs,” 1 1 th 
International Symposium on High Performance Distributed Computing, 
Edinburgh, Scotland, July 2002, pages 150-1 60. 
G. Jost, H. Jin, J. Labarta, and J. Gimenez, “Interfacing Computer Aided 
Parallelization and Performance Analysis,” 3rd International Conference on 
Computational Science, Melbourne, Australia, June 2003, Springer LNCS, 
to appear. 

24 


